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Formation, motion, and decay of vectorial cavity solitons
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We show that symmetry breaking in vectorial intracavity second-harmonic generation is the prerequisite for
the formation of cavity solitons. These solitons emerge as a result of self-organization of modulationally
unstable polarization fronts. It is shown that truncated one-dimensional cavity solitons move because they lack
the equilibrium of attracting and repelling forces. Collisions of various two-dimensional cavity solitons result
in a rich diversity of final state§S1063-651X98)51409-2

PACS numbeps): 42.65.Tg, 03.40.Kf, 42.60.Da, 42.65.Ky

Stable localized states in nonlinear optical systems witifrequency. In contrast to the conventional scheme of an
spatial degrees of freedom attract growing interest. Thes®PO, where the relevant effect is spontaneous down-
spatial solitary waves or solitons represent a balance betwe&@nversion, we assume driving fields,, at the FH fre-
linear dispersing effects, caused by spatial correlations a@uency. Our primary concern is the evolution of the emerg-
diffraction in continuous or coupling in discrete systems, and"9 FH cavity fieldsA,,, whereas the SH cavity fiel&
the action of some nonlinearity. Parametric solitons represer?terveS essentially as an |d_Ier required for quadratlc Interac-
bound states of two or three field components locked by Jion. In the good cavity limit the scaled evolution equations

guadratic interactiofil,2]. It was shown that they exist not read aq16]

only in Hamiltonian systems but also in dissipative ones as 52 52

e.g. in externally driven cavities with intrinsic and radiation |j — + =t +ApFI|A +A§,1-B= E, j=12
losses. Thus they can be termed cavity solitons. Cavity soli- AN G

tons were found to exist as one- and two-dimensional objects ) 5 D
in optical parametric oscillator€OPO3 (down-conversion o9 19 d . _

[3,4] and in intracavity second harmon{SH) generation T2 E”L Y2 +Agtiy|B+AI1A,=0,

(up-conversioh [5]. The situation where two fundamental
harmonic(FH) components of orthogonal polarization gen- whereT denotes the time scaled with respect to the FH pho-
erate a SH wavévectorial interactionis of particular inter-  ton lifetime in the cavity. The transverse coordinates are nor-
est[6,7]. Various types of cavity solitons were already found malized with respect to the inverse angular linewidth of the
for other nonlinearities, e.g., for saturable focusj8y and FH resonance. Crucial parameters that control the optical
saturable absorbtive medj8], for semiconductor$10,11], response of the resonator are the respective deturings
and in the limit of nascent optical bistability in the vicinity of from the resonances scaled with the FH resonance width and
critical points[12]. Concerning intracavity vectorial second the ratio between the photon lifetimes All intensities are
harmonic generation, it has been shown that for a symmetrinormalized such that the coefficients in front of the nonlinear
input beyond a certain threshold intensity a spontaneouterms, viz., the effective quadratic susceptibility accounting
symmetry-breaking bifurcation takes pla¢é&3]. In this for the field overlap and also for the mismatch of the wave
Rapid Communication, we show that this symmetry breakingiumbers, become unity.
can result in the formation of modulationally unstable topo- The normalized quantities can easily be related to the real
logical solitons. However, we will demonstrate that theseworld. This relation depends crucially on the finesse of the
developing modulational instabilitigdlls) can, at least par- cavity, e.g., response time and spatial scales increase with
tially, be suppressed, and stationary as well as nonstationathe finesse, whereas the intensity scales decrease. A typical
localized structures can form. We show that localized struceonfiguration could consist of a 5Q@m-thick KTP crystal
tures in a dissipative optical environment can move and exsandwiched between two mirrors with 95% reflectivity for
hibit an amazing diverse collision behavior. We point outboth the FH and the SH waves. If tlig, coefficient is em-
that the procedure we pursue can be applied for other nomployed and phase matching occurs at a certain tilt at 1.06
linear systems, e.g., with cross-phase modulation due tgm, one obtains the length and time scales ag®0and 110
third-order nonlinearities that exhibit symmetry breaking asps, respectively. Close to phase matchipg; 1 holds. The
well [14,15 regardless of whether or not they are opticaldriving intensity|E;|>=1 corresponds to 50 kW/cn
ones. Solving Eg.(1) we used different numerical codes. Sta-
Here we assume that two orthogonally polarized FHtionary solutions of Eq(1l) were sought in taking advantage
waves with equal mean frequencies generate a SH wave of a Newton iteration scheme based on a band matrix solver.
either polarizatior(type-Il phase matchingn a high-finesse For the full dynamical simulation we employed two different
planar cavity(Fabry-Peot resonatorwith a quadratic non- codes, viz., a +2-dimensional finite difference time domain
linear material. The model holds likewise for the case whergrocedure as well as a split-step fast-Fourier routine. The
the interaction of two input waves with different frequenciesnumerical grid consisted usually of 28&56 points. Be-
leads to the formation of a wave with the corresponding suntause we were interested in localized structures on a

1063-651X/98/583)/27454)/$15.00 PRE 58 R2745 © 1998 The American Physical Society



RAPID COMMUNICATIONS

R2746 U. PESCHEL, D. MICHAELIS, C. ETRICH, AND F. LEDERER
6 ; 40
|FH input —
— ! o j.
—= 4 ' @ o
3 7 ! o " 20— £
S oH [T 17 ] 0 =
.- | S 8
- | (=]
|
* Ton e 0
— |
o 27
- b |
0 T | T | T | I

0 2 4 6 E

FIG. 1. Symmetry-breaking and modulational instabilities of the
stationary plane wave solutions. Shown are the transmitted ampli- 20
tudes vs the incident fiel& for a symmetric input and,=1,Ap B
=1.5,y=1; thin solid (dashedl lines: stablgunstablé plane wave 104
solutions; thick solid lines: modulationally unstable domains;
squares; symmetry-breaking bifurcations.
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plane-wave background, the boundary conditions did not g 2. one-dimensional solitorigolarization fronts and their
play a crucial role provided that the computing window wasmodulational instability in two dimensions; parameters as in Fig. 1
chosen large enough to avoid any interaction with the boundand E=7. (a) Topological solitons(polarization front in the FH
aries. In fact, both reflectingderivative equal to zejoand  and bright soliton in the SH(b) MI gain of the one-dimensional
periodic boundary conditions provided the same results.  soliton. (c) Evolving snakelike instability of the polarization front
As usual, the instabilities of stationary plane wave solu-(T=320) (d) Decay of the polarization front and emission of mov-
tions Ajg;p0 and By serve as a point of departure for the ing structures T=560).
identification of transverse localized structures. Because we ) o o . i
are particularly concerned with symmetry-breaking effects!ies (thick solid lines in Fig. 1, a Hopf bifurcation, or run-
we assume a symmetric inpl,=E,=E and express the Ning waves, here we will ex_cluswely conS|der_par_ameter
stationary plane-wave solutions by their respective Sym domains yvhere Fhe gsyrr_]metnc plane-wave solgtlgn is stable
= (A0t Ay0)/2 and differenceDy=i(Ay— Asg)/2. Then, in (perpendicular line in Fig. )L There are two distinct but

the stationary plane-wave limit Eq&L) simplify to mathematically identical situations, \./izA1I>A2 and A; _
<A,. Because these states can coexist, similarly to domains
[Aa+i]Sy+SEBo=E, of different magnetization in a ferromagnetic material, the
transition between them leads to the formation of a one-
[Ag+iy]Bo+ SS+ Dgzo, 2 dimensional topological solitofsee Fig. 2a)]. Recalling that
the two FH amplitudes apply to perpendicular polarizations,
[Ap+i]Do+DEBy=0. the result is a polarization front. With only one transverse

degree of freedom, say, as e.g. in a film waveguide reso-
Obviously, Egs.(2) imply that in terms of sum and differ- hator, this soliton is stable and it rests because of its symme-
ence amplitudes, vectorial intracavity second-harmonic gentry with respect to an interchange of the two FH components.
eration resembles the scalar case. One fietleS,) gener-  Accounting for the second transverse dimensignthe po-
ates the second harmonic, whereas the other ffleceD,) larization front[field structuref?(x), i=A;,A,,B] turns out
is exclusively excited via spontaneous down-conversionto be modulationally unstable with respect to perturbations
Thus our scheme corresponds to an OPO but with a drivingf the form 5f;(x,k)cosky-+ ¢p), which grow exponentially
SH field generated via up-conversion of an additional FHin time with the growth ratéMI gain) g(k) [see Fig. 20)].
field. For small input field€, the SH is weak. Consequently For k=0 the gain is zero because the one-dimensional case
no difference field is generated{=0) and the case of is recovered where the structure is stable and translational
scalar SH generation is recovered. Conversely, symmetripvariance holds. In this case, the linear eigenmétigx,k
breaking O,#0) occurs if the SH fieldB, matches the =0) is the resulting trivial mode the shape of which corre-
OPO thresholdB|?= A4+ 1 [see the third of Eqg2)]. Itis  sponds to the derivativsf;(x,k=0)=af2(x)/ox] of the
worth noting that for a further increase of the input ampli- polarization front. We found the shape of the linear eigen-
tude the SH intensity remains locked to the threshold valuenode 6f;(x,k) to vary only slightly with growing spatial
(for more details sef8]). The respective bifurcation diagram frequenciesk. Thus its exponential growth results mainly in
is displayed in Fig. 1. In any case, the asymmetric state ia periodic shift or a snakelike instability of the entire front
single valued, although conventional continuous-wave bistafFig. 2(c)] and an ultimate decayFig. 2(d)].
bility (S-shaped hysteresis loomay occur on the symmetric In two-dimensional geometries, only finite structures can
branch before the symmetry-breaking bifurcation. Beyonde excited. An asymmetric, but homogeneous, polarization
the pitchfork bifurcation, the symmetric state is unstabledistribution can be altered by a short local increase of that
against homogeneous perturbations. Although the asymmeinput field component that exhibits the weak cavity field.
ric branches may again destabilize via modulational instabiliAccordingly, the front between two domains of different po-
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FIG. 3. Stable cavity solitons in a two-dimensional environ-

ment; parameters as in Fig. @) first-order one-dimensional soli- FIG. 4. Moving soliton(parameters as in Fig)2

ton, (b) second-order one-dimensional solitdn) first-order two-

dimensional soliton; dashed and thin solid lines; FH, bold line: SH.polarization front to exhibit exponentially decaying spatial
oscillations. This periodic potential can capture another

larization is always bent somewhere. For a moderate bendinigont. Constructive interference of two parallel fronts results

(large radiuy the modulational instability observed above in stable stripes or one-dimensional solitons of different or-

manifests itself in a radial expansion of the bent structureders according to the number of oscillations between the

Comparing the curvature of a circular structure with that of afronts [see Figs. &) and 3b)]. Two-dimensional stable lo-

developing snakelike instability we derive the expansion ve<calized structures can be formed if the polarization front is

locity from the MI gain as bent to form a circle with a small radius. Then the front
interacts with its own oscillating tailssee Fig. &)]. The
Vexd R)Eg(kma)()/(kﬁwR), 3 stable and resting solitons of different order that arise repre-

sent an equilibrium between centrifugal and centripetal
whereR is the radius of curvature arg{k,,) the maximum forces owing to the curvature and the periodic potential, re-
growth rate arising at the spatial frequenky,.. Conse- spectively. Although different oscillations contribute to the
guently, a circular domain of one polarization grows at theperiodic potential and determine the structure of the resulting
expense of the surrounding area with a velocity asymptotisolitons, the lowest-order solitons are defined by the con-
cally approaching zerfsee Eq(3)]. As already mentioned, structive interference of the large-amplitude oscillations of
this scenario is typical for large radii where the field shape othe strong FH wave component. They exhibit a period of
the straight front is preserved and the bending can be conabout
pared with that induced by evolving modulational instabili-
ties on a straight polarization front. For small radii or several Ni=~27/Re(\Ap+I). 4
interacting fronts, a stabilization can be achieved. To under-
stand this, we look at the conservative counterparts of thand are strongly damp€ddee Fig. 2a)] but determine the
cavity solitons we are dealing with. In many Hamiltonian width of the peak of the lowest-order soliton.
systems, solitary waves with oscillating tails occur. It has Although one-dimensional solitons, shown in Fig$a)3
been shown that, e.g., two such objects may form boundnd 3b), are stable in two transverse dimensions, they re-
states due to an effective, oscillating potential caused by thquire an infinite spatial domain to exist. This can be circum-
mutual interference of their oscillating tail&7]. Although  vented by bending the stripe to a large circle. But from a
our system is non-Hamiltonian, we observe similar phenommmore realistic point of view, it is interesting to study how a
ena. Looking at the shape of the one-dimensional topologicatuncated one-dimensional structure evolves. It can be easily
soliton in Fig. Za), we find all field components of a straight excited by an elliptical beam. The final state is rapidly at-
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FIG. 5. Collision of moving cavity solitongparameters as in Fig.)2(a) central collision,(b) noncentral collision.
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robust(see Fig. 5. A central collision of two moving soli-
tons results in an unconventional final state, viz., prior to the
actual collision, they halt and form a localized state consist-
ing of two truncated resting solitons. After an off-axis colli-
sion they do not fuse or penetrate each other as observed in
conservative systems; rather, they simply try to avoid close
contact.
J The situation changes drastically if less stable structures,
0 10 20 30 40 X 0 10 20 30 40 X i.e., higher-order resting solitons, are involved in the colli-
sion process. Here the impact of a moving soliton disturbs
the intrinsic equilibrium that pins the structure together. As a
consequence, new solitons are emitted where this can lead to
the ultimate destruction of the colliding elements. Even if a
tained and represents a stable soliton consisting of a growingne-dimensional second-order soliton is stabilized in two di-
stripe, identical to the one-dimensional soliton, and two-mensions by bending it to a circle, its robustness is weak.
dimensional moving “heads” at both endsee Fig. 4. In Interaction with a moving truncated soliton induces complete
order to disclose the basic properties of such structures, weecay starting at the collision site. Moving solitons are emit-
focus our attention on one side of the structure, keeping ined, alternating between both sites. A treelike structure de-
mind that similar phenomena can be observed on the otherelops and starts to cover the whole plane with a roll pattern
side as well. Owing to the truncation of the stripe, there is nqsee Fig. 6.
balance of forces at the head of the soliton. The force in- In conclusion, we have found that symmetry breaking oc-
duced by the curvature remains uncompensated and theirs in vectorial intracavity second-harmonic generation. By
whole structure expands. The expansion velogityis simi-  combining the two different asymmetric states, a variety of
lar to that of a curved phase front of the same size and can Hecalized structures can be formed. Resting and moving soli-
approximated for a first-order soliton bys,~ve(A1/2).  tons of different orders are found. Truncated moving solitons
First-order moving solitons show a remarkable robustnessan be understood as a symbiotic state consisting of one- and
They are even emitted by decaying unstable structures sudtvo-dimensional solitons. These moving solitons may be
as polarization front§see Fig. 2d)]. scattered at each other and at stationary localized structures.
If solitons move, their interaction and collision behavior The scattering at higher-order solitons results in the emission
becomes a critical issue. We have performed various colliof new solitons and in a partial or total destruction of the
sion experiments and found the moving solitons to be verynitial components.

FIG. 6. Collision of a moving soliton with a one-dimensional
resting second-order solitdparameters as in Fig)2
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