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Formation, motion, and decay of vectorial cavity solitons

U. Peschel, D. Michaelis, C. Etrich, and F. Lederer
Institut für Festkörpertheorie und Theoretische Optik, Friedrich-Schiller-Universita¨t Jena, Max-Wien-Platz 1, 07743 Jena, Germany

~Received 20 January 1998; revised manuscript received 18 June 1998!

We show that symmetry breaking in vectorial intracavity second-harmonic generation is the prerequisite for
the formation of cavity solitons. These solitons emerge as a result of self-organization of modulationally
unstable polarization fronts. It is shown that truncated one-dimensional cavity solitons move because they lack
the equilibrium of attracting and repelling forces. Collisions of various two-dimensional cavity solitons result
in a rich diversity of final states.@S1063-651X~98!51409-2#

PACS number~s!: 42.65.Tg, 03.40.Kf, 42.60.Da, 42.65.Ky
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Stable localized states in nonlinear optical systems w
spatial degrees of freedom attract growing interest. Th
spatial solitary waves or solitons represent a balance betw
linear dispersing effects, caused by spatial correlations
diffraction in continuous or coupling in discrete systems, a
the action of some nonlinearity. Parametric solitons repres
bound states of two or three field components locked b
quadratic interaction@1,2#. It was shown that they exist no
only in Hamiltonian systems but also in dissipative ones
e.g. in externally driven cavities with intrinsic and radiatio
losses. Thus they can be termed cavity solitons. Cavity s
tons were found to exist as one- and two-dimensional obj
in optical parametric oscillators~OPOs! ~down-conversion!
@3,4# and in intracavity second harmonic~SH! generation
~up-conversion! @5#. The situation where two fundament
harmonic~FH! components of orthogonal polarization ge
erate a SH wave~vectorial interaction! is of particular inter-
est@6,7#. Various types of cavity solitons were already fou
for other nonlinearities, e.g., for saturable focusing@8# and
saturable absorbtive media@9#, for semiconductors@10,11#,
and in the limit of nascent optical bistability in the vicinity o
critical points@12#. Concerning intracavity vectorial secon
harmonic generation, it has been shown that for a symme
input beyond a certain threshold intensity a spontane
symmetry-breaking bifurcation takes place@13#. In this
Rapid Communication, we show that this symmetry break
can result in the formation of modulationally unstable top
logical solitons. However, we will demonstrate that the
developing modulational instabilities~MIs! can, at least par-
tially, be suppressed, and stationary as well as nonstatio
localized structures can form. We show that localized str
tures in a dissipative optical environment can move and
hibit an amazing diverse collision behavior. We point o
that the procedure we pursue can be applied for other n
linear systems, e.g., with cross-phase modulation due
third-order nonlinearities that exhibit symmetry breaking
well @14,15# regardless of whether or not they are optic
ones.

Here we assume that two orthogonally polarized
waves with equal mean frequencies generate a SH wav
either polarization~type-II phase matching! in a high-finesse
planar cavity~Fabry-Pe´rot resonator! with a quadratic non-
linear material. The model holds likewise for the case wh
the interaction of two input waves with different frequenci
leads to the formation of a wave with the corresponding s
PRE 581063-651X/98/58~3!/2745~4!/$15.00
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frequency. In contrast to the conventional scheme of
OPO, where the relevant effect is spontaneous do
conversion, we assume driving fieldsE1/2 at the FH fre-
quency. Our primary concern is the evolution of the eme
ing FH cavity fieldsA1/2, whereas the SH cavity fieldB
serves essentially as an idler required for quadratic inte
tion. In the good cavity limit the scaled evolution equatio
read as@16#
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whereT denotes the time scaled with respect to the FH p
ton lifetime in the cavity. The transverse coordinates are n
malized with respect to the inverse angular linewidth of t
FH resonance. Crucial parameters that control the opt
response of the resonator are the respective detuningsDA/B
from the resonances scaled with the FH resonance width
the ratio between the photon lifetimesg. All intensities are
normalized such that the coefficients in front of the nonline
terms, viz., the effective quadratic susceptibility account
for the field overlap and also for the mismatch of the wa
numbers, become unity.

The normalized quantities can easily be related to the
world. This relation depends crucially on the finesse of
cavity, e.g., response time and spatial scales increase
the finesse, whereas the intensity scales decrease. A ty
configuration could consist of a 500-mm-thick KTP crystal
sandwiched between two mirrors with 95% reflectivity f
both the FH and the SH waves. If thed31 coefficient is em-
ployed and phase matching occurs at a certain tilt at 1
mm, one obtains the length and time scales as 30mm and 110
ps, respectively. Close to phase matching,g51 holds. The
driving intensityuE1u251 corresponds to 50 kW/cm2.

Solving Eq.~1! we used different numerical codes. St
tionary solutions of Eq.~1! were sought in taking advantag
of a Newton iteration scheme based on a band matrix sol
For the full dynamical simulation we employed two differe
codes, viz., a 112-dimensional finite difference time domai
procedure as well as a split-step fast-Fourier routine. T
numerical grid consisted usually of 2563256 points. Be-
cause we were interested in localized structures on
R2745 © 1998 The American Physical Society
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plane-wave background, the boundary conditions did
play a crucial role provided that the computing window w
chosen large enough to avoid any interaction with the bou
aries. In fact, both reflecting~derivative equal to zero! and
periodic boundary conditions provided the same results.

As usual, the instabilities of stationary plane wave so
tions A10/20 and B0 serve as a point of departure for th
identification of transverse localized structures. Because
are particularly concerned with symmetry-breaking effec
we assume a symmetric inputE15E25E and express the
stationary plane-wave solutions by their respective sumS0
5(A101A20)/2 and differenceD05 i (A102A20)/2. Then, in
the stationary plane-wave limit Eqs.~1! simplify to

@DA1 i #S01S0* B05E,

@DB1 ig#B01S0
21D0

250, ~2!

@DA1 i #D01D0* B050.

Obviously, Eqs.~2! imply that in terms of sum and differ
ence amplitudes, vectorial intracavity second-harmonic g
eration resembles the scalar case. One field~hereS0) gener-
ates the second harmonic, whereas the other field~hereD0)
is exclusively excited via spontaneous down-conversi
Thus our scheme corresponds to an OPO but with a driv
SH field generated via up-conversion of an additional
field. For small input fieldsE, the SH is weak. Consequent
no difference field is generated (D050) and the case o
scalar SH generation is recovered. Conversely, symm
breaking (D0Þ0) occurs if the SH fieldB0 matches the
OPO thresholduB0u25DA

211 @see the third of Eqs.~2!#. It is
worth noting that for a further increase of the input amp
tude the SH intensity remains locked to the threshold va
~for more details see@8#!. The respective bifurcation diagram
is displayed in Fig. 1. In any case, the asymmetric stat
single valued, although conventional continuous-wave bi
bility ~S-shaped hysteresis loop! may occur on the symmetri
branch before the symmetry-breaking bifurcation. Beyo
the pitchfork bifurcation, the symmetric state is unsta
against homogeneous perturbations. Although the asym
ric branches may again destabilize via modulational instab

FIG. 1. Symmetry-breaking and modulational instabilities of t
stationary plane wave solutions. Shown are the transmitted am
tudes vs the incident fieldE for a symmetric input andDA51,DB

51.5,g51; thin solid~dashed! lines: stable~unstable! plane wave
solutions; thick solid lines: modulationally unstable domain
squares; symmetry-breaking bifurcations.
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ties ~thick solid lines in Fig. 1!, a Hopf bifurcation, or run-
ning waves, here we will exclusively consider parame
domains where the asymmetric plane-wave solution is sta
~perpendicular line in Fig. 1!. There are two distinct bu
mathematically identical situations, viz.,A1.A2 and A1
,A2 . Because these states can coexist, similarly to dom
of different magnetization in a ferromagnetic material, t
transition between them leads to the formation of a o
dimensional topological soliton@see Fig. 2~a!#. Recalling that
the two FH amplitudes apply to perpendicular polarizatio
the result is a polarization front. With only one transver
degree of freedom, say,x, as e.g. in a film waveguide reso
nator, this soliton is stable and it rests because of its sym
try with respect to an interchange of the two FH componen
Accounting for the second transverse dimension~y!, the po-
larization front@field structuref i

0(x), i 5A1 ,A2 ,B] turns out
to be modulationally unstable with respect to perturbatio
of the form d f i(x,k)cos(ky1w0), which grow exponentially
in time with the growth rate~MI gain! g(k) @see Fig. 2~b!#.
For k50 the gain is zero because the one-dimensional c
is recovered where the structure is stable and translati
invariance holds. In this case, the linear eigenmoded f i(x,k
50) is the resulting trivial mode the shape of which corr
sponds to the derivative@d f i(x,k50)5] f i

0(x)/]x# of the
polarization front. We found the shape of the linear eige
mode d f i(x,k) to vary only slightly with growing spatial
frequenciesk. Thus its exponential growth results mainly
a periodic shift or a snakelike instability of the entire fro
@Fig. 2~c!# and an ultimate decay@Fig. 2~d!#.

In two-dimensional geometries, only finite structures c
be excited. An asymmetric, but homogeneous, polariza
distribution can be altered by a short local increase of t
input field component that exhibits the weak cavity fie
Accordingly, the front between two domains of different p

li-

;

FIG. 2. One-dimensional solitons~polarization fronts! and their
modulational instability in two dimensions; parameters as in Fig
and E57. ~a! Topological solitons~polarization front! in the FH
and bright soliton in the SH.~b! MI gain of the one-dimensiona
soliton. ~c! Evolving snakelike instability of the polarization fron
(T5320) ~d! Decay of the polarization front and emission of mo
ing structures (T5560).
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larization is always bent somewhere. For a moderate ben
~large radius! the modulational instability observed abov
manifests itself in a radial expansion of the bent structu
Comparing the curvature of a circular structure with that o
developing snakelike instability we derive the expansion
locity from the MI gain as

nexp~R!>g~kmax!/~kmax
2 R!, ~3!

whereR is the radius of curvature andg(kmax) the maximum
growth rate arising at the spatial frequencykmax. Conse-
quently, a circular domain of one polarization grows at t
expense of the surrounding area with a velocity asympt
cally approaching zero@see Eq.~3!#. As already mentioned
this scenario is typical for large radii where the field shape
the straight front is preserved and the bending can be c
pared with that induced by evolving modulational instab
ties on a straight polarization front. For small radii or seve
interacting fronts, a stabilization can be achieved. To und
stand this, we look at the conservative counterparts of
cavity solitons we are dealing with. In many Hamiltonia
systems, solitary waves with oscillating tails occur. It h
been shown that, e.g., two such objects may form bo
states due to an effective, oscillating potential caused by
mutual interference of their oscillating tails@17#. Although
our system is non-Hamiltonian, we observe similar pheno
ena. Looking at the shape of the one-dimensional topolog
soliton in Fig. 2~a!, we find all field components of a straigh

FIG. 3. Stable cavity solitons in a two-dimensional enviro
ment; parameters as in Fig. 2;~a! first-order one-dimensional soli
ton, ~b! second-order one-dimensional soliton,~c! first-order two-
dimensional soliton; dashed and thin solid lines; FH, bold line: S
ng
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polarization front to exhibit exponentially decaying spat
oscillations. This periodic potential can capture anoth
front. Constructive interference of two parallel fronts resu
in stable stripes or one-dimensional solitons of different
ders according to the number of oscillations between
fronts @see Figs. 3~a! and 3~b!#. Two-dimensional stable lo-
calized structures can be formed if the polarization front
bent to form a circle with a small radius. Then the fro
interacts with its own oscillating tails@see Fig. 3~c!#. The
stable and resting solitons of different order that arise rep
sent an equilibrium between centrifugal and centripe
forces owing to the curvature and the periodic potential,
spectively. Although different oscillations contribute to th
periodic potential and determine the structure of the resul
solitons, the lowest-order solitons are defined by the c
structive interference of the large-amplitude oscillations
the strong FH wave component. They exhibit a period
about

l1'2p/Re~ADA1 i !. ~4!

and are strongly damped@see Fig. 2~a!# but determine the
width of the peak of the lowest-order soliton.

Although one-dimensional solitons, shown in Figs. 3~a!
and 3~b!, are stable in two transverse dimensions, they
quire an infinite spatial domain to exist. This can be circu
vented by bending the stripe to a large circle. But from
more realistic point of view, it is interesting to study how
truncated one-dimensional structure evolves. It can be ea
excited by an elliptical beam. The final state is rapidly

.

FIG. 4. Moving soliton~parameters as in Fig. 2!.
FIG. 5. Collision of moving cavity solitons~parameters as in Fig. 2!. ~a! central collision,~b! noncentral collision.
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tained and represents a stable soliton consisting of a grow
stripe, identical to the one-dimensional soliton, and tw
dimensional moving ‘‘heads’’ at both ends~see Fig. 4!. In
order to disclose the basic properties of such structures
focus our attention on one side of the structure, keeping
mind that similar phenomena can be observed on the o
side as well. Owing to the truncation of the stripe, there is
balance of forces at the head of the soliton. The force
duced by the curvature remains uncompensated and
whole structure expands. The expansion velocitynsol is simi-
lar to that of a curved phase front of the same size and ca
approximated for a first-order soliton bynsol'nexp(l1/2).
First-order moving solitons show a remarkable robustne
They are even emitted by decaying unstable structures
as polarization fronts@see Fig. 2~d!#.

If solitons move, their interaction and collision behavi
becomes a critical issue. We have performed various c
sion experiments and found the moving solitons to be v

FIG. 6. Collision of a moving soliton with a one-dimension
resting second-order soliton~parameters as in Fig. 2!.
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robust~see Fig. 5!. A central collision of two moving soli-
tons results in an unconventional final state, viz., prior to
actual collision, they halt and form a localized state cons
ing of two truncated resting solitons. After an off-axis col
sion they do not fuse or penetrate each other as observe
conservative systems; rather, they simply try to avoid clo
contact.

The situation changes drastically if less stable structu
i.e., higher-order resting solitons, are involved in the co
sion process. Here the impact of a moving soliton distu
the intrinsic equilibrium that pins the structure together. A
consequence, new solitons are emitted where this can lea
the ultimate destruction of the colliding elements. Even i
one-dimensional second-order soliton is stabilized in two
mensions by bending it to a circle, its robustness is we
Interaction with a moving truncated soliton induces compl
decay starting at the collision site. Moving solitons are em
ted, alternating between both sites. A treelike structure
velops and starts to cover the whole plane with a roll patt
~see Fig. 6!.

In conclusion, we have found that symmetry breaking o
curs in vectorial intracavity second-harmonic generation.
combining the two different asymmetric states, a variety
localized structures can be formed. Resting and moving s
tons of different orders are found. Truncated moving solito
can be understood as a symbiotic state consisting of one-
two-dimensional solitons. These moving solitons may
scattered at each other and at stationary localized structu
The scattering at higher-order solitons results in the emiss
of new solitons and in a partial or total destruction of t
initial components.
.
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